
7 AD-Al,2 095 TEXAS UNIV AT AUSTIN DEPT OF COMPUTER
SCIENCES

F/6 5/2
ANNUAL SCIENTIFIC REPORT FOR AVANT AFOSR-81-0205. 15 JUNE 1981 -ETC(U)
JUL 82 K M CHANDY. AFOSR-81-0205

UNCLASSIFIED AFOSR-TR-82 0880 N

Uf4CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dat. Entered)

READ INSTRUCTIONS
REPORT DOCUMENTA.flflJ PAGE BEFORE COMPLETING FORM

T, o
'

4 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

A £ OI .I . 8 2 - 0 8 A - /
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

1 ANNUAL SCIENTIFIC REPORT FOR GRANT AFOSR-81-0205, ANNUAL, 15 Jun 81-14 Jun 82

= 15 JUNE 1981-14 JUNE 1982 6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

K.M. Chandy AFOSR-81-0205

9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT, PROJECT. TASK

Computer Sciences Department AREA & WORK UNIT NUMBERS

University of Texas PE61102F; 2304/A2
Austin TX 78712

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Directorate of Mathematical & Information Sciences July 1982
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB DC 20332 11
14. MONITORING AGENCY NAME & ADDRESS(if different [ron Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION 'DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

I8. SUPPLEMENTARY NOTES

IS. KEY WORDS (Coneinue on reverse side If necessary and identify by block number) 19-2

A

!iKl 20. ASISTP.CT (Contira..en re are" sid If necessary &. Identity by block number)

C O In the 'ast year', work wi thv grant was carried out in three areas: (1) the
. development of distrib ted a rithns to detect termination of distributed corn-
putations., (2) methods for proving the correctness of distributed programs, with
an emphasis on proving temp%.r1]. pr >perties and. (,.) the development of distributed
algorithms to solve graplh problems. Work in all three areas was fruitful,
resulting in new ideas ana refereed papers in technical journals and conferences.

The author has felt that the key issues in designing and proving distributed
software are (1) proving that all the processes in the system cooperate in main-
(CONT.)

DD I o 1473 EITION OP NOV 65 1S OUSOLETE UNCLASSIFIED
SECURITY CLASSIFICATZON OF THIS PA.,E (Wen Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF T! PAGE(2,ha Data 5nte-td)

ITEM #20, CONTINUED: \taming a system-wide invariant and (2) developing
algorithms by which asynchronous processes can determine collectively that the
system a a whole has entered certain states. Work in the last year was based
on the above premise. The author's work on developing new distributed
algorithms supports this premise.

KF

copy

AA

UNCLASSIFIED
SECURITY CLASSIFICATIOW OF ", PAGE(Il.he Dta E,'

APOSR-TR- 8 2 -088 0

Annual Report for Grant APOSR 81-0205

Research Objectives

The goal of this project is to study the problem of

developing correct and efficient distributed software, i.e.

software which consists of cooperating processes. The specific

focus is on the distributed nature of the distributed software.

9 Our objective is to extend techniques developed for sequential

programs to distributed programs.

The development of a sequential program consists of posinq

assertions, constructing a program to ensure that thes-e asser-

tions are maintained and then proving that they are. Termina-

tion is shown by demonstrating that execution of the program

reduces some metric which is bounded from below. The major

problems in extending this methodology to distributed systems

are: (1) no one process can assert, unilaterally, that an in-

variant holds, because some other process may cause the invariant

to be violated and (2) a distributed system may terminate in

the form of a deadlock for instance, even though no process in

the system has terminated; furthermore, no process can assert

uniLlaterally that the entire system has terminated. The funda-

mental problem with distributed systems is to ensure cooperation

among processes in maintaining invariants and in achieving proper

termination. Therefore, the focus of this project was, and con-

tinues to be, issues of cooperation. Apoe rpbi ees

distribut ion unlimited.

82 10 12 166

Annual Report page 2

The project has been extremely successful in tle last year

resulting in the identification of fundamental problems and the

publication of solutions to some of these problems. Work was

carried out in 3 areas:

1. Distributed algorithms for detecting termination of
distributed computations.

2. Methods for proving correctness of distributed
software.

3. The development of distributed algorithms to solve
problems in various application areas.

Termination Detection

A distributed computation may terminate due to a deadlock

or because the computation has been successfully completed.

The major impetus for developing distributed termination detec-

tion algorithms has come from distributed data bases where the

concern is to detect deadlock (because data bases may be pre-

sumed to run indefinitely). Therefore our primary goal last

year, was to develop correct, practical and simple distributed

algorithms to detect deadlock. Motivation for attacking the

problem was also derived from the following statement in a

recent paper by Gligor and Shattuck: "Renewed interest in distri-

buted systems has resulted in the publication of at least ten

protocols for deadlock detection. However, few of these proto-

cols are correct and fewer appear to be practical."

In a system consisting of processes which only communicate
with a single central agent, deadck can be detected easily

' Ai OFCE OFFICE OF SCIErTIFIC RESEAR"9 (Ays(
NOTICE OF TRANSMITTAL TO DTIC
This technical r-nort hIs been rrv1-,,qd qnj I,
approved for-,-'i- " "-

D-strib- :i--

Annual Report page 3

because the central agent has complete information about every

process. Deadlock detection is more difficult when there is

no such central agent and processes may communicate directly

with one another. If we could assume that message communication

is instantaneous or place other restrictions on message delays,

deadlock detection becomes simpler. However, the only realistic

general assumption is that message delays are arbitrary (but

finite). We present deadlock detection algorithms for networks

of processes in which there is no single central agtnt and in

which message delays are arbitrary (but finite). We only assume

that messages sent by a process A to a process B are received by

B in the order sent by A.

We consider two models of deadlock in message communicating

systems: resource and communication deadlocks. Deadlock detec-

tion algorithms are given for both models. Most models of dead-

lock in distributed data bases are resource deadlock models

[5,6,7,8,9,10,11,141; in these models deadlock arises because

processes may wait permanently for one another for resources held

by each other. The communication deadlock model is a more abstract

and more general model of deadlock; it is applicable to any mes-

sage communicating system of processes.

We have presented and proved the correctness of simple,

practical algorithms to detect resource and communication

deadlocks (1,2,121.

.................. ,,.,

Annual Report page 4

Methods for Proving Correctness of Distributed Software

Our primary goal in this area has been to extend well-

known sequential programming proof constructs such as pre-

condition, post-condition and the use of metrics in proving ter-

mination to distributed programs. The obvious advantage in

using techniques which are extensions of sequential-programming

techniques is that the tools and the experience gained from

sequential programming can be applied to distributed programs as

well. We work with a general model of distributed systems; wo

do not require that distributed programs be coded in any parti-

cular language for purposes of proof.

The key features of our method are:

1. Modular Specification: We present a scheme for speci-
fying processes in a modular fashion. The specification
relies exclusively on a process's interaction with its
environment and is independent of process implementation.

2. Hierarchy: We present inference rules by which a
specification for a network is derived from specifica-
tions of component processes. Thus the proof of a
network is not concerned with implementations of
component processes.

3. Compatibility With Sequential Programming Proof Techniques:
We have extendedwell known sequential programming proof
constructs such as pre-condition,post-condition and the
ideas of termination proof to distributed systems. Those
familiar with the Floyd-Hoare proof technique for sequen-
tial programming should find our method to be straight-
forward.

We use some ideas from sequential program proofs in proofs

of message-passing systems. In an annotated proof of a sequen-

tial program, each statement s has a precondition pre(s) and a

postcondition post(s). The proof shows that if assertion pre(s)

Annual Report page 5

holds prior to execution of s, post(s) holds following execution

of s assuming execution of s terminates. We shall use the

precondition/postcondition concept for describing process safety

properties. Proofs of liveness (or termination) in sequential

programs are based on demonstrating the existence of a metric

such that the execution of each statement causes the metric to

decrease in value. We will use a similar technique in process

proofs. However, processes can wait indefinitely for messages,

something that conventional sequential programs do not do; to

handle this we introduce a new cohcept called activity which

is the condition under which a process will definitely send or

receive a message. Other liveness properties are derived frr-

the basic property of activity and from safety.

We have developed a coherent extension of sequential nro-

gramming proof techniques to distributed programs. Several

examples are found in Ossefort (151.

The Development Of Distributed Algorithms To Solve Problems In

Various Application Areas

We have attempted to develop distributed algorithms in two

application areas: simulation and graph problems. The applica-

tion areas were chosen because of their importance and the

familiarity of the principal investigators with these areas.

Our pioneering effort in the distributed simulation area has

received wide recognition; therefore our effort last year was

primarily in graphs. By developing distributed simulations to

:1r.

Annual Report paye 6

important problems we hoped to gain experience in writing and

proving distributed programs, as well as making a contribution

to the literature on algorithms.

We began by developing a distributed solution for one of

the most-studied problems In graphs: finding the shortest path

between vertices. A distributed solution is important in the

following situation: communication paths are being set up between

processes in an unireliable, 4nd perhaps even hostile environ-

ment. Since no process has information about all other processes

in the network, centralized, sequential-programming algorithms

cannot be used.

We developed a distributed algorithm to detect shortest

paths in graphs wbich have negative cycles. We also demonstrated

the application of our shortest-path algorithm in solving a

variety of graph problems including depth-first search.

Another important problem in graphs is that of detecting

knots: a vertex in a directed graph is in a knot if for every

vertex v. reachable from vi, vi is also reachable from vj. The

problem of knot detection is important because of its relevance

to deadlocks [3,41. We developed a scheme whereby a vertex (which

is represented by a process) can determine if it belongs to a

knot [13].

Computing Network-Wide Functions

We found that there was a sizable class of problems with

the following structure:

. , , ,u~~~~~n,,'* " " ~ I lk' ' l , ... ,. - - :_

Annual Report page 7

Processes in a network cooperate in computing a result

which we call the lob!al-result where

global-result = f(local-result(i), for all processes i)

where local-result(i) is some computed result in process i, at

its termination, and f is any computable function. The knot

detection problem is only one of many problems that fall within

this class. We developed general solutions to solve this class

of problems. Our solution was proved correct and its application

to specific practical problems was demonstrated.

SUMMARY

The past year has been very productive. If we can continue

the same rate of productivity in the future we shall be very

pleased. In the future we plan to enter new areas and to ensure

that the results of the past year are accepted and used by the

computer sciences community.

Annual Report i, aqe 8

REFERENCES

[11 Chandy, K.M., J. Misra and L. Haas, "A Distributed
Deadlock Detection Algorithm and Its Correctness Proof,"
to appear Communications of the ACM.

[2] Chandy, K.M. and J. Misra, "A Distributed Algorithm for
Detecting Resource Deadlocks in Distributed Systems,"
Proceedings of the ACM SIGACT-SIGOPS Principles of
Distributed Computing Conference, August 18-20,7-i 82,
Ottawa, Canada.

[3] Chang, Ernest, "Decentralized Deadlock Detection in
Distributed Systems," University of Victoria, Victoria,
British Columbia, Canada V8W 2Y2.

[41 Dijkstra, E.W. and C.S. Scholten, "Termination Detection
for Diffusing Computation," information Processing Letters,
Vol. 11, No. 1, pp. 1-4, August 1980, North-Holland
Publishing Company.

[5] Gligor, V.D. and S.H. Shattuck, "Deadlock Detection in
Distributed Systems," IEEE Transactions on Software
Engineering, SE-6, 5, September 1980, pp. 435-440

[61 Goldman, B., "Deadlock Detection in Computer Networks,"
Technical Report MIT LCS-TRI85, M.I.T., September 1977.

[7] Gray, J., "Notes on Database Operating Systems," in Lecture
Notes in Computer Science, Springer-Verlag, 1978.

[8) Isloor, S.S. and T.A. Marsland, "An Effective 'On-Line'
Deadlock Detection Technique for Distributed Database
Management Systems," Proceedings COMPSAC 1978, IEEE,
pp. 283-288.

[9] Lomet, D.B., "Coping with Deadlock in Distributed Systems,"
Research Report RC 7460 (#32196), IBM T.J. Watson Research
Center, December 1978.

[101 Mahoud, S.A. and J.S. Riordon, "Software Controlled Access
to Distributed Databases," INFOR 15, 1, February 1977,
pp. 22-36.

[111 Menasce, D. and R. Muntz, "Locking and Deadlock Detection
in Distributed Databases," IEEE Transactions on Software
Engineering, SE-5, 3, May 1979, pp. 195-202.

Annual Report page 9

[12] Misra, Jayadev and K. M. Chandy, "Termination Detection
of Diffusing Computations in Communicating Sequential
Processes," Transactions on Programming Languages and
Systems, Vol. 4, No. 1, January 1982, pp. 37-43.

[13] Misra, J. and K.M. Chandy, "A Distributed Granh Alqorithm:
Knot Detection," to appear Transactions on Programming
Languages and Systems.

[141 Obermarck, R., "Distributed Deadlock Detection Algorithms,"
ACM TODS, Vol. 7, No. 2, June 1982.

[15] Ossefort, Marty, "Correctness Proofs of Communicatinq
Processes - Three Illustrative Examples from the Literal e,"
to appear Transactions on Programming Languages and
Systems.

--- Ada.

Annual Report (APOSR 81-0205)

List of publications

1. Distributed Computation on Graphs: Shortest Path
Algorithms, to appear in Communications of the ACM,
(K. M. Chandy and J. Misra)

2. A Distributed Deadlock Detection Algorithm and Its
Correctness Proof, to appear in Communications of the
ACM, (K. M. Chandy, J. Misra and L. Haas)

3. A Distributed Graph Algorithm: Knot Detection,
to appear in ACM Transactions on Programming Languages
and Systems, (J. Misra and K. M. Chandy)

4. A Distributed Algorithm for Detecting Resource Dead-
locks in Distributed Systems, Proceedings of the ACM
SIGACT-SIGOPS Conference on the Principles of Distri-
buted Computing, August 18-20, 1982, Ottawa, Canada.
(K. M. Chandy and J. Misra)

5. Proving Safety and Liveness of Communicating Processes
with Examples, Proceedings of the ACM SIGACT-S]GOPlc;
Conference on the Principles of Distributed Computing,
August 18-20, 1982, Ottawa, Canada (J. Misra, K. M. Chandy
and Todd Smith)

Annual R~eport (AFOSR 81-0205)

List of Professional Personnel

K. Mani Chandy, Principal Investiqlator

Jayadev Misra, Faculty, Computer Sciences, UT Austin

wo

